Pedestrian-Vehicle Communication Displays in the Context of **Autonomous Driving: A Scoping Review**

NC STATE UNIVERSITY

Background and Objective

1. Background

- One of the major challenges that autonomous vehicles are facing today is the interaction with pedestrians.
- Designers of autonomous vehicle technologies have proposed multiple types of displays, including LED lights, screen and voice instructions to communicate with pedestrians.

2. Objective

• This project aims to provide an overview of the pedestrian-vehicle communication displays in the context of autonomous driving.

Figure 1. Flow diagram of scoping review

Description of display and experimental methods

Xiao Yu^a, Xin Ye^a, Jing Feng^b ^aZhejiang University, ^bNorth Carolina State University E-mail: xyu@ncsu.edu

Results

1. What communication displays were tested in these studies?

TABLE 1. Classification of the communication displays in these studies

Studies	Displays			Information					T C
	Visual	Auditory	Haptic	Status	Perception	Intention	Advice	Speed	Interface
Faas et al., 2020					\checkmark	\checkmark			• LED light strips
de Miguel, 2019	\checkmark				\checkmark		\checkmark		• Images(eyes & colors showed on a screen
Mahadevan, 2018	\checkmark				\checkmark	\checkmark	\checkmark		 An LED strip a speaker LED lights a screen (eyes) an Android phone
Clamann, 2017	\checkmark								• A LCD screen
Matthews, 2017	\checkmark	\checkmark			\checkmark		\checkmark		 LED word display Speakers strobe light
Burns, 2019						\checkmark			 Projectors LED light strips

TABLE 2. Illustration of some visual displays

Interfaces

Images

LED light strips (Faas et al., 2020)

A screen (Clamann, 2017)

> A projector (Burns, 2019)

Details

Steady lights: status

Fast flash: plan to go

• Slow flash: yield

A dynamic display indicating when it was safe or not to cross

Flash and move along the strips : perception

• A dynamic display presenting the speed of the vehicle

- Projected striped lines indicating intention
- "bunch" together: slow or stop
- Expand away: accelerate
- Flex to right or left: turn a corner
- A large blue arrow: the position to turn

3. The effectiveness of these displays

Recommendations

• Generally, any kind of communication displays support the interaction.^{1, 2, 3, 5} But, vehicle motion patterns such as speed and distance are still the most crucial cues.^{3, 4, 5, 6}

• Visual display is the primary way for communication. Auditory cues may be cacophony in the real world.³

• Intention information is more helpful supplementary information than perception information.^{1, 3}

• The effectiveness oaf anthropomorphic cue especially the eye gaze still remains uncertain.^{2, 3}

Figure 3. the eye gaze showed on a screen

• Among the 6 studies, only 2 used auditory display and 1 used haptic display. More forms of displays should be included and tested in the future.

• Designers should consider diverse pedestrian populations, such as elderly people and people with color blindness.

• It's important to find a balance between informing and information overload.

Reference

Faas, S. M., Mathis, L., & Baumann, M. (2020). External HMI for self-driving vehicles: Which information shall be displayed? Transportation Research Part F: Psychology and Behaviour, 68, 171-186. doi:10.1016/j.trf.2019.12.009

2. de Miguel, M. A., Fuchshuber, D., Hussein, A., & Olaverri-Monreal, C. (2019). Perceived pedestrian safety: Public interaction with driverless vehicles. Paper presented at the 90-95. doi:10.1109/IVS.2019.8814145

Mahadevan, K., Somanath, S., & Sharlin, E. (2018). Communicating awareness and intent in autonomous vehicle-pedestrian interaction. doi:10.1145/3173574.3174003 Clamann, M., Aubert, M. & Cummings, M. (2017). Evaluation of Vehicle-to-Pedestrian

Communication Displays for Autonomous Vehicles. Matthews, M., Chowdhary, G. & Kieson, E. (2017). Intent Communication between

Autonomous Vehicles and Pedestrians.

6. Burns, C., Oliveira, L., Thomas, P., Iyer, S. & Birrell, S. (2019). Pedestrian Decision-Making Responses to External Human-Machine Interface Designs for Autonomous Vehicles. 70-75. 10.1109/IVS.2019.8814030.